The orthotic management of children involves most of the same objectives, design fundamentals and materials as for adult patients; however, the same growth and development issues that define how we interact with infants, toddlers and older juveniles also apply to the process and methods by which we provide rehabilitation componentry.

The overall goals are essentially the same: Prevention and/or correction of deformities and functional improvement. Often, the desired outcome can frequently be achieved with scaled-down versions of adult appliances; nevertheless, providing pediatric orthoses calls into play certain special skills and considerations, which add some complexity to the process but frequently with commensurate professional reward.

Space limitations preclude a lengthy discussion of this topic, but here are some unique aspects orthotists encounter in managing children:

• Custom vs. off-shelf. While some popular devices such as the Pavlik harness, orthopedic shoes and night splints are primarily prefabricated components, pediatric orthoses tend to be more custom-made because of the reduced tolerance for error corresponding to the child’s stature and smaller area on which correctional forces can be focused.

We devote this issue of our newsletter to the unique aspects of providing orthotic devices to children. From a biomechanical and design perspective, working with kids draws on the same orthotic principles as for adults; indeed, the spectrum of orthotic appliances includes relatively few systems designed specifically for pediatric applications. Many of these are detailed on the inside pages.

As with prosthetics, the caveat Children are not small adults! clearly applies to orthotic management—kids present unique opportunities and challenges, which are discussed below.

On page 4, we highlight new orthoses for managing torticollis and positional plagiocephaly.

We hope you find this presentation enlightening and welcome your questions and comments.

Pediatric Orthoses

What’s Unique About Bracing Kids?

The orthotic management of children involves most of the same objectives, design fundamentals and materials as for adult patients; however, the same growth and development issues that define how we interact with infants, toddlers and older juveniles also apply to the process and methods by which we provide rehabilitation componentry.

The overall goals are essentially the same: Prevention and/or correction of deformities and functional improvement. Often, the desired outcome can frequently be achieved with scaled-down versions of adult appliances; nevertheless, providing pediatric orthoses calls into play certain special skills and considerations, which add some complexity to the process but frequently with commensurate professional reward.

Space limitations preclude a lengthy discussion of this topic, but here are some unique aspects orthotists encounter in managing children:

• **Growth.** The propensity of a child’s bones and muscles to grow non-synchronously challenges orthotists to incorporate design features that will sustain productive orthotic forces over time while maintaining range of motion...and remaining on speaking terms with parents, HMOs, and others who write the checks.

• **Developmental age.** Each child presents with his/her unique combination of motor development, cognitive and adaptive

(Continued on page 2)
The following selection represents the bulk of orthotic componentry employed in contemporary management of juvenile patients. While some also have adult applications, the majority of these designs are primarily prescribed for children.

If you have an interest or questions regarding a particular orthosis presented, or excluded, here, please call our office.

Ankle Foot Orthosis (AFO)

Application: Varum and valgus deformities

Description: Custom-fabricated thermoplastic, metal or composite device designed and trimmed for a patient’s unique needs

Function: Provide proper alignment, limit or encourage ankle motion

Counter Rotation System

Application: Internal tibial torsion, maintenance of post-operative clubfoot or metatarsus adductus correction

Description: Plastic multihinged orthosis with bilateral footplates; three hinged joints and eight circular rotation joints

Function: Hold feet in corrected external or internal rotated position while allowing independent leg movement and free hip and knee motion

DAFO - Dynamic Ankle-Foot Orthosis (also called Tone-Reducing AFO and Total Contact AFO)

Application: Cerebral palsy, hemiplegia, spastic diplegia

Description: Thin, flexible, molded thermoplastic orthosis covering the entire foot; custom-contoured footplate; designed to distribute weight-bearing forces over large area

Function: Reduce ankle hypertonicity, increase ankle stability and provide proper alignment

Developmental Dysplasia of the Hip (DDH) Orthosis

Application: Hip dysplasia in children beyond pre-walking stage

Description: Pelvic band connected to thigh cuffs by aluminum joint with 20 degree extension stop and 90 degree flexion stop or free motion

Function: Provide positive abduction positioning

Floor Reaction Orthosis

Application: Cerebral palsy “crouch gait” - Knee instability

Description: Rigid thermoplastic or laminate AFO with neutral ankle position and a broad anterior panel just below the knee

Function: Apply knee extension moment during stance phase to prevent knee buckling and excessive flexion associated with crouch gait

Knee-Ankle-Foot Orthosis

Application: Hemiplegia, cavovarus, or lower-limb instability and contractures

Description: Primarily the laminated brace extending from footplate to footplate, typically including knee and/or ankle joint

Function: Control motion and alignment of the knee and ankle

Orthopedic Shoes

Application: Correction and accommodation of foot deformities

Description: Specially shaped extra-depth designs

Function: Accommodate for internal modifications

Parapodium

Application: Paraplegic patient, spastic cerebral palsy; myelodysplasia

Componentry Capsules

... (Continued from page 1)
Scoliosis Braces to Scoliosis Jackets

diplegia, spina bifida, and congenital hip dysplasia. Office-based orthoses, AFOs and KAFOs incorporate thermoplastic/rubber from thigh to ankle and align and align and align.

A child adds to the therapy.

Colorful, creative, and action figures, can significantly more acceptable techniques—designing clothing or to fit into thicken body image and gaining older, appearance-adapted adolescents.

Though a child’s abilities, will vary significantly active parental and orthotic intervention will. Few pediatric patients will do the at-home portion of the treatment. Trained and experienced professionals. We invite your

Pavlik Harness

Application: Hip dysplasia, including congenital hip dislocation, in infants of pre-walking age

Description: Shoulder harness with anterior and posterior straps extending from chest strap to stirrups

Function: Hold hip in flexion-abduction attitude while allowing movement within acceptable limits

Reciprocating Gait Orthosis

Application: Lower-body neurologic impairment: Indicated in L1 to L3 lesions in children with functioning iliopsoas and hip adductors

Description: HKAF0 incorporating cable system or similar method of mechanically translating hip extension on one side into hip flexion on the contralateral side

Function: Provide standing and ambulation ability, thereby raising physical and psychological horizons

Scoliosis Jacket

Application: Idiopathic scoliosis

Description: Custom thermoplastic TLSO

Function: Limit curve progression and need for surgical correction

Scottish Rite Orthosis

Application: Legg-Calve-Perthes disease

Description: Lightweight orthosis consisting of metal pelvic band, plastic thigh cuffs, aluminum hip joints with thrust-bearing hip joints or a telescoping spreader bar (older design)

Maintain hips in abduction containing femoral head in the acetabulum

SWASH - Standing, Walking and Sitting Hip Orthosis (See photo page 1.)

Application: Cerebral palsy; any child whose adduction and/or internal rotation at hip joint interferes with function or induces lateral migration of the femoral head

Description: Plastic padded waist band and two joint assemblies connected by shaped leg bars to adjustable plastic thigh bands

Function: Stabilize hip and oppose excessive adduction and internal rotation; reduce scissor gait while walking and improve balance while standing

Tibial Fracture Orthosis

Application: In lieu of plaster cast to provide greater freedom of activity during healing, reduced muscle atrophy and shorter disability time

Description: Total contact, usually thermoplastic, brace with plastic or metal ankle joints and heel insert. Most often custom-molded for pediatric applications

Function: Allow mobilization of the leg during fracture healing; minimize rotation and shear forces; support tibia and fibula

Wheaton Brace - (See photo page 1.)

Application: Metatarsus adductus; clubfoot; tibial torsion. Used in place of serial casting or corrective shoes

Description: Molded thermoplastic and Velcro knee-ankle-foot orthosis

Function: Applies direct corrective rotational force on the tibia without any torque on the femur or hip.
Congenital muscular torticollis or sternomastoid torticollis, is a common musculoskeletal anomaly in which the head is tilted to one side and rotated in the opposite direction due to a congenital shortening of the sternocleidomastoid muscle. The condition becomes apparent shortly after birth and is also known as “wry neck” syndrome.

The causes of torticollis may be genetic, acquired, or idiopathic and may also develop later in childhood or adulthood. Acquired torticollis, much more difficult to treat, results from damage to the muscular or nervous system due to trauma or disease.

In most cases surgical release of the tight sternocleidomastoid muscle is indicated followed by aggressive physical therapy to stretch the contracture.

Surgeons often are interested in orthotically managing the deformity by gradually moving the head into the correct position. A new torticollis orthosis now available from Fillauer gives clinicians the ability to maintain the head in any position desired with respect to cervical flexion, abduction and transverse rotation. This device is easy to don and doff, comfortable for the patient to wear, and allows multiplane positional adjustments.

The STAR band (Symmetry Through Active Remolding) is a custom-made cranial orthosis used for the treatment of positional plagiocephaly—head asymmetry that resembles a parallelogram when seen from the top. The ear on the side of the flattened area is located more anteriorly then the ear on the contralateral side, and there may be a slight bulging of the frontal area on the flattened side. This condition is often associated with supine positioning during infancy as recommended by the American Academy of Pediatricians to avoid sudden infant death syndrome (SIDS).

This orthosis provides corrective forces on the child’s skull, which will help promote facial and skull symmetry while improving skull shape.

The Star band is used to treat children 3-18 months old. The helmet is fabricated from a positive mold of the patient’s head modified to a symmetrical shape. This approach allows forces on the areas in contact with the helmet and spaces for the head to fill in during the growing and remolding process. The STAR band is contraindicated for hydrocephalus and craniosynostosis.

For more information on these new orthoses, please contact our office.

Nobbe Orthopedics, Inc.
3010 State St. • Santa Barbara, CA 93105