The past 15 years have seen an explosion of new technology, materials and product designs that now enables prosthetists to provide a more exacting prosthesis for each patient, closely suited to individual physiology, capabilities and expectations. Nowhere is this proliferation of new designs and products more evident than in foot and ankle componentry.

The “business end” of a lower-limb prosthesis, the point of contact between an amputee and the surface over which he or she would ambulate, is crucial to achieving prosthetic success. The closer the ankle-foot system matches the abilities, environment and activity desires of the amputee, the better the outcome. The Health Care Financing Administration’s system of functional levels governing Medicare reimbursement for lower-limb prosthetics provides a convenient framework for categorizing the various ankle-foot options by performance and patient type. Predicted functional level is generally determined by the referring physician and prosthetist, taking into account (1) the patient’s history; (2) current status, including condition of the residual limb; and (3) his or her desire to ambulate.

Level 1 - Household Ambulators

Amputees in this category have the ability or potential to use a prosthesis for transfers on level surfaces at a fixed cadence and tend to be older patients who have undergone amputation due to vascular insufficiency. They generally require safe, basic function and light weight for moving relatively short distances. The SACH (solid ankle, cushion heel) foot is generally the foot of choice for this type of patient, although a single-axis foot may be appropriate for transfemoral amputees.

The SACH foot simulates plantar flexion at heel strike by compression of an elastic heel wedge and provides forefoot dorsiflexion by means of a flexible toe section. The SACH foot’s simple construction (no moving parts), light weight, and low cost make it an ideal choice for Level 1 amputees, although enhanced versions are frequently selected for Level 2 and occasionally Level 3 patients. With its simplicity and comparative low cost, the SACH foot is frequently selected for preparatory prostheses.

Note: The SACH foot generally offers less knee stability at heel contact than single- and multi-axis foot designs.

The single-axis foot provides fore-aft movement about an “ankle” axis, limited and cushioned by plantar flexion and dorsiflexion bumpers. Single-axis feet are typically lightweight, low-cost and light-duty, although certain models incorporating dynamic response characteristics are rated as high as Functional Level 3. Because single-axis feet increase knee stability in early stance phase, they are often preferred for above-knee amputation levels.

(Continued on page 2)
Appropriate Foot Selection Key Determinants

(Continued from page 1)

Level 2 - Limited Community Ambulators

These amputees have the ability or potential for ambulation with the ability to traverse low-level environmental barriers, such as curbs, stairs and uneven surfaces. They can benefit from more durable SACH foot models, certain multiaxial designs, and feet incorporating lower-level dynamic response characteristics.

Multiaxial ankles are well-suited to community ambulators in that they accommodate uneven terrain by providing inversion-eversion and some degree of transverse rotation in addition to dorsiflexion and plantar flexion. The multiaxial mechanism may be a distinct component mated to a separate prosthetic foot (e.g. the Seattle C-stance ankle used with a Seattle Lightfoot) or an integral part of the foot (e.g. the Flex-Foot K2 Sensation).

Multiaxial ankle/foot systems are particularly appreciated by amputees who enjoy outdoor activities, notably hikers and golfers. They also lend themselves well to the needs of bilateral amputees. Other designs that may be appropriate for Level 2 amputees include the USMC Multi Axis Ankle, Springlite Comfortwalk, and Dycor Geriatric ADL prosthetic foot.

Critical factors for achieving lower-limb prosthetic success include maintaining tissue viability of the residual limb and maximizing patient comfort when walking. Prosthetic ambulation can be quite painful and damaging to the residual limb as impact forces at heel strike are transmitted through the prosthetic limb through the socket to the residual limb and on to the upper leg, hips and back.

Undampened, these unfriendly forces can discourage even the fittest amputees from achieving their functional promise. This concern is particularly applicable to transfemoral amputees, who have less residual limb surface over which to distribute impact forces.

Prosthetists have long sought to minimize ambulation stresses. The common SACH foot, for example, features a cushioned heel, which absorbs some of the shock. Socket padding and liners also are regularly used to help amputees withstand the repetitive jolts of heel strike.

Lately, product designers have developed some new approaches to impact reduction, including in-line shock absorbers and innovative new heel designs.

Shock Absorbers Enhanced

Level 3 - Active Community Ambulators

Amputees within this classification have the ability or potential for ambulation with variable cadence. Feet for this group typically incorporate a flexible keel to provide dynamic assist at toe-off, helping propel the leg into swing phase.

These patients frequently benefit from a dynamic response foot built around a flexible keel, which deforms during weight-bearing, storing energy, then releases that energy during late-stance phase, providing forward propulsion.

Early dynamic response systems were created mostly for amputee athletes, but steady improvements in design, weight reduction, reliability and cost have brought these components within the realm of moderately active, “everyday” amputees. They are commonly prescribed and reimbursed for Level 3 patients, often in combination with a multiaxial ankle.

Some leading dynamic response feet now available include:
- Endolite Dynamic Response Foot/Multiflex Ankle
- Ohio Willow Wood Carbon Copy 2 Light Foot and Carbon Copy HP (High Performance)
- Kingsley Steplite
- Seattle Light Foot
- SAFE II Foot
- OttoBock Dynamic Plus, Greissinger Plus and C-Walk

Shock Pylons

In its basic application, the pylon of an endoskeletal prosthesis—typically a metal rod of a length to match the amputation level—serves as the connector and weight-bearing member between the foot component and the socket of a below-knee prosthesis or the knee unit of an above-knee system. The primary expectations of basic pylons are that they withstand the recurrent shock of heel strike and weigh no more than absolutely necessary.

The new generation of pylons adds the role of shock—and torsion—reduction. This capability not only can raise the threshold at which an amputee limits activity due to residual limb discomfort, but further replicates some of the natural gait characteristics lost with key musculature during amputation.

Engineers have taken several different approaches to pylon shock absorption:
- The *Endolite TT pylon* incorporates a high performance spring, selectable by patient weight and activity level.
- The *Seattle AirStance* is a pneumatic system, incorporating a piston and cylinder arrangement, which the patient can adjust for optimum performance and comfort using an accessory pump.
- The new *Pathfinder* (see page 4) also employs a pneumatic approach, allowing the wearer to select the level of cushioning by the amount of air pumped into the cylinder.
True Level 4 applications are typically high tech, high impact and high cost. They also serve as the proving ground where the mainstream systems of the future are developed. Arguably less than five percent of all amputees will qualify for reimbursement of ankle-foot components in this category, but the principles underlying these sophisticated systems will benefit many more-typical patients as time progresses. For example, lightweight carbon-fibre systems designed around the needs of amputee athletes have since been refined and incorporated into products more suited to the needs of Level 3 and sometimes even Level 2 patients.

Flex-Foot, has incorporated the proportional response, active heel and ankle motion built into its most advanced components into its mid-market Flex-Walk and Sure-Flex models. Meanwhile, its engineering department continues to push the envelope with new designs such as the Re-Flex VSP and low-profile Allurion (see page 4).

Springlite products likewise span the spectrum from light-duty geriatric applications to athletic. Unique features include one-piece construction, high durability and custom design and manufacture of each system to prosthetist specifications. The signature Advantage DP (dynamic pylon) offers dynamic response multiaxial function and up to 16 degrees of rotation in an extremely lightweight, single-piece construction.

The College Park TruStep, also appropriate for very active amputees, provides a fully articulated foot, split-toe design and dynamic response.

Though this discussion has highlighted many of the leading ankle-foot components available to the lower-limb amputee population, there are in fact many more. We welcome your inquiries about any of these components and will be pleased to work with you to devise the best solutions to amputee needs.

Impact-Storing Heels

A quite different approach to impact stress reduction is a dynamic heel, such as the CarbonX Active Heel, a standard feature of Flex-Foot feet for moderate-to-active amputees.

At heel strike, the Active Heel deflects; as the foot moves through foot flat to midstance, the heel’s stored energy is transferred to the forefoot for release during late stance phase and toe-off, supplementing the energy return from the deflection of the forefoot itself.

Like all prosthetic innovations, these shock absorbers work well for some patients and not for others. Dynamic pylons carry a weight cost and are often not appropriate for patients with a long transtibial amputation. While transtibial amputees can benefit from shock pylons, they are usually considered more beneficial to above-knee patients. Dynamic heels are still relatively new and are generally provided to younger, more active amputees.

Shock absorption is an intriguing, emerging component of prosthetic practice. We welcome your inquiries.
The march of prosthetic technology continues strong with the recent introduction of several new prosthetic feet that offer some significant advantages over previous models.

- The Flex-Foot Allurion and Springlite Lo Rider are new very-low-profile feet incorporating dynamic heel and toe response, and lightweight, low-maintenance construction. Both can be used on prostheses for almost any amputee level, but they are particularly applicable to amputees with long residual limbs. The Lo Rider in fact is an ideal selection for Symes applications.

- The 1C40 C-Walk from Otto Bock is a dynamic response, multi-axial foot incorporating a unique “C” spring to provide wearers with a surprising high level of comfort. The C element loads at heel strike, then releases the stored potential to facilitate a smooth rollover to mid-stance. As forefoot loading increases, the C-spring loads again, storing energy that will be released at toe-off. This foot is particularly appropriate for highly active transtibial amputees who engage in a broad range of activities, including leisure sports.

- The Ohio Willow Wood Pathfinder presents a revolutionary design featuring a pneumatic shock absorber, composite toe springs and composite footplate in a triangular arrangement. This construction approximates polycentric ankle motion without including an actual ankle component, prolonging foot-flat and thus enhancing balance and control. The Pathfinder is rated for Level 3 and 4 amputees but has also been applied successfully to certain Level 2 patients.

For more information on these and other prosthetic foot advances, please call our office.

Choosing the 'Right' Foot

Faced with an ever-increasing selection of prosthetic foot models, our prosthetic staff strives to stay current on the latest proven products and help the prescribing physician and amputee understand the pros and cons of the various components under consideration.

Foot selection typically entails tradeoffs among performance, durability, weight and cost. While active patients and amputee athletes garner most of the media and marketing attention, the far greater numbers of lower-limb amputees occupy the opposite end of the ability spectrum: typically older, dysvascular people who have neither the desire nor energy to walk more than a block or two. For these patients, low weight, and often low cost, become overriding factors.

Reimbursement, particularly under Medicare, often limits the range of choices. In some cases prosthetists are prevented from providing the foot they feel will be of most benefit to a patient, because it will not qualify for reimbursement.

Our practice is prepared to recommend and provide the most appropriate prosthetic components for each patient we serve, reflecting both physical and fiscal realities.

Nobbe Orthopedics, Inc.
3010 State St. • Santa Barbara, CA 93105